Factorizations that Involve Ramanujan ’ s Function k ( q ) = r ( q )

نویسندگان

  • Shaun COOPER
  • Michael D. HIRSCHHORN
چکیده

In the “lost notebook”, Ramanujan recorded infinite product expansions for 1 √ r − ( 1−√5 2 )√ r and 1 √ r − ( 1 + √ 5 2 )√ r, where r = r(q) is the Rogers–Ramanujan continued fraction. We shall give analogues of these results that involve Ramanujan’s function k = k(q) = r(q)r(q).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Dual of Göllnitz’s (big) Partition Theorem*

A Rogers-Ramanujan (R-R) type identity is a q-hypergeometric identity in the form of an infinite (possibly multiple) series equals an infinite product. The series is the generating function of partitions whose parts satisfy certain difference conditions, whereas the product is the generating function of partitions whose parts usually satisfy certain congruence conditions. For a discussion of a ...

متن کامل

Modularity and the distinct rank function

If R(ω,q) denotes Dyson’s partition rank generating function, due to work of Bringmann and Ono, it is known that for roots of unity ω = 1, R(ω,q) is the “holomorphic part” of a harmonic weak Maass form. Dating back to Ramanujan, it is also known that ̂ R(ω,q) := R(ω,q−1) is given by Eichler integrals and modular forms. In analogy to these results, more recently Monks and Ono have shown that modu...

متن کامل

On Silverman's conjecture for a family of elliptic curves

Let $E$ be an elliptic curve over $Bbb{Q}$ with the given Weierstrass equation $ y^2=x^3+ax+b$. If $D$ is a squarefree integer, then let $E^{(D)}$ denote the $D$-quadratic twist of $E$ that is given by $E^{(D)}: y^2=x^3+aD^2x+bD^3$. Let $E^{(D)}(Bbb{Q})$ be the group of $Bbb{Q}$-rational points of $E^{(D)}$. It is conjectured by J. Silverman that there are infinitely many primes $p$ for which $...

متن کامل

Explicit Constructions of Ramanujan Complexes

In [LSV] we defined and proved the existence of Ramanujan complexes, see also [B1], [CSZ] and [Li]. The goal of this paper is to present an explicit construction of such complexes. Our work is based on the lattice constructed by Cartwright and Steger [CS]. This remarkable discrete subgroup Γ of PGLd(F ), when F is a local field of positive characteristic, acts simply transitively on the vertice...

متن کامل

Ramanujan's 1 Ψ 1 Summation

Acknowledgements I thank Dick Askey, Bruce Berndt, Susanna Fishel, Jeff Lagarias and Michael Schlosser for their helpful correspondence. Notation. It is impossible to give an account of the 1ψ1 summation without introducing some q-series notation. To keep the presentation as simple as possible, we assume that 0 < q < 1. Suppressing q-dependence, we define two q-shifted factorials: (a)∞ := ∏∞ k=...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011